EN วงจรไฟฟ าและอ เล กทรอน กส Circuits and Electronics บทท 1 พ นฐานทางไฟฟ า

Size: px
Start display at page:

Download "EN วงจรไฟฟ าและอ เล กทรอน กส Circuits and Electronics บทท 1 พ นฐานทางไฟฟ า"

Transcription

1 EN วงจรไฟฟ าและอ เล กทรอน กส Circuits and Electronics บทท 1 พ นฐานทางไฟฟ า สาขาว ชาว ศวกรรมคอมพ วเตอร คณะว ศวกรรมศาสตร มหาว ทยาล ยเทคโนโลย ราชมงคลพระนคร

2 ว ตถ ประสงค (OBJECTIVES) บอกว ดทางไฟฟ า และหน วยว ดทางปร มาณท ใช ในทางไฟฟ า บอกหน วยว ดระบบเอสไอ (SI system) ท ใช ในทางไฟฟ าและอ เล กทรอน กส แปลงหน วยว ดทางปร มาณต าง ๆ บอกโครงสร างอะตอมของต วนา เช น ทองแดง เข าการทาการของแหล งจ ายไฟฟ า เช น แบตเตอร และแหล งจ ายไฟฟ ากระแสตรง ชน ดต าง ๆ เข าใจหล กการทางานของต วต านทานได เข าใจหล กการของเซม คอนด กเตอร บอกชน ดของอ ปกรณ อ เล กทรอน กส ต าง ๆ ท ใช หล กการของความต านทาน

3 พ นฐานทางไฟฟ า

4 POWERS OF TEN It should be apparent from the relative magnitude of the various units of measurement that very large and very small numbers are frequently encountered in the sciences. To ease the difficulty of mathematical operations with numbers of such varying size, powers of ten are usually employed. This notation takes full advantage of the mathematical properties of powers of ten.

5 POWERS OF TEN The notation used to represent numbers that are integer powers of ten is as follows:

6 FIXED-POINT, FLOATING-POINT, SCIENTIFIC, AND ENGINEERING NOTATION Scientific (also called standard) notation and engineering notation make use of powers of ten, with restrictions on the mantissa (multiplier) or scale factor (power of ten). Engineering notation specifies that all powers of ten must be 0 or multiples of 3, and the mantissa must be greater than or equal to 1 but less than 1000.

7 FIXED-POINT, FLOATING-POINT, SCIENTIFIC, AND ENGINEERING NOTATION Prefixes TABLE 1.2

8 แรงด นไฟฟ า และกระแสไฟฟ า

9 INTRODUCTION Now that the foundation for the study of electricity/electronics has been established, the concepts of voltage and current can be investigated. The term voltage is encountered practically every day. We are aware that most outlets in our homes are 220 volts. Although current may be a less familiar term, we know what happens when we place too many appliances on the same outlet the circuit breaker opens due to the excessive current that results.

10 ATOMS AND THEIR STRUCTURE A basic understanding of the fundamental concepts of current and voltage requires a degree of familiarity with the atom and its structure. The simplest of all atoms is the hydrogen atom, made up of two basic particles, the proton and the electron. The nucleus of the hydrogen atom is the proton, a positively charged particle. The orbiting electron carries a negative charge equal in magnitude to the positive charge of the proton.

11 ATOMS AND THEIR STRUCTURE FIG. 2.1 Hydrogen and helium atoms.

12 ATOMS AND THEIR STRUCTURE Copper is the most commonly used metal in the electrical/electronics industry. An examination of its atomic structure will reveal why it has such widespread application. It has 29 electrons in orbits around the nucleus, with the 29th electron appearing all by itself in the 4 th shell.

13 ATOMS AND THEIR STRUCTURE FIG. 2.2 The atomic structure of copper.

14 VOLTAGE Since it would be inconsequential to talk about the voltage established by the separation of a single electron, a package of electrons called a coulomb (C) of charge was defined as follows: One coulomb of charge is the total charge associated with x electrons. If a total of 1 joule (J) of energy is used to move the negative charge of 1 coulomb (C), there is a difference of 1 volt (V) between the two points.

15 VOLTAGE Since the potential energy associated with a body is defined by its position, the term potential is often applied to define voltage levels. For example, the difference in potential is 4 V between the two points, or the potential difference between a point and ground is 12 V, and so on.

16 CURRENT FIG. 2.9 Basic electric circuit.

17 CURRENT The unit of current measurement, ampere, was chosen to honor the efforts of André Ampère in the study of electricity in motion. In summary, therefore, the applied voltage (or potential difference) in an electrical/electronics system is the pressure to set the system in motion, and the current is the reaction to that pressure.

18 VOLTAGE SOURCES The term dc, used throughout this text, is an abbreviation for direct current, which encompasses all systems where there is a unidirectional (one direction) flow of charge. FIG Standard symbol for a dc voltage source.

19 VOLTAGE SOURCES In general, dc voltage sources can be divided into three basic types: Batteries (chemical action or solar energy) Generators (electromechanical), and Power supplies (rectification a conversion process to be described in your electronics courses).

20 VOLTAGE SOURCES Batteries General Information Primary Cells (Non-rechargeable) Secondary Cells (Rechargeable) Lead-Acid Nickel Metal Hydride (NiMH) Lithium-ion (Li-ion)

21 VOLTAGE SOURCES Batteries FIG Alkaline primary cell: (a) Cutaway of cylindrical Energizer cell; (b) various types of Eveready Energizer primary cells.

22 VOLTAGE SOURCES Batteries FIG Lithium primary batteries.

23 VOLTAGE SOURCES Batteries FIG Maintenance-free 12 V (actually 12.6 V) lead-acid battery.

24 VOLTAGE SOURCES Batteries FIG Nickel metal hydride (NiMH) rechargeable batteries.

25 VOLTAGE SOURCES Batteries FIG Dell laptop lithium-ion battery: 11.1 V, 4400 mah.

26 VOLTAGE SOURCES Solar Cell FIG Solar System: (a) panels on roof of garage; (b) system operation.

27 VOLTAGE SOURCES Generators The dc generator is quite different from the battery, both in construction and in mode of operation. When the shaft of the generator is rotating at the nameplate speed due to the applied torque of some external source of mechanical power, a voltage of rated value appears across the external terminals. The terminal voltage and power-handling capabilities of the dc generator are typically higher than those of most batteries, and its lifetime is determined only by its construction.

28 VOLTAGE SOURCES Generators FIG dc generator.

29 VOLTAGE SOURCES Power Supplies The dc supply encountered most frequently in the laboratory uses the rectification and filtering processes as its means toward obtaining a steady dc voltage. FIG A 0 V to 60 V, 0 to 1.5 A digital display dc power supply

30 CONDUCTORS AND INSULATORS Different wires placed across the same two battery terminals allow different amounts of charge to flow between the terminals. Many factors, such as the density, mobility, and stability characteristics of a material, account for these variations in charge flow. In general, however, conductors are those materials that permit a generous flow of electrons with very little external force (voltage) applied. In addition, good conductors typically have only one electron in the valence (most distant from the nucleus) ring.

31 CONDUCTORS AND INSULATORS TABLE 2.1 Relative conductivity of various materials

32 CONDUCTORS AND INSULATORS FIG Various types of insulators and their applications. (a) Fi-Shock extender insulator; (b) Fi-Shock corner insulator; (c) Fi-Shock screw-in post insulator.

33 CONDUCTORS AND INSULATORS TABLE 2.2 Breakdown strength of some common insulators.

34 AMMETERS AND VOLTMETERS It is important to be able to measure the current and voltage levels of an operating electrical system to check its operation, isolate malfunctions, and investigate effects impossible to predict on paper. As the names imply, ammeters are used to measure current levels; voltmeters, the potential difference between two points. If the current levels are usually of the order of milliamperes, the instrument will typically be referred to as a milliammeter, and if the current levels are in the microampere range, as a microammeter.

35 AMMETERS AND VOLTMETERS FIG Voltmeter connection for an up-scale (+) reading.

36 AMMETERS AND VOLTMETERS FIG Ammeter connection for an up-scale (+) reading.

37 AMMETERS AND VOLTMETERS FIG Volt-ohmmilliammeter (VOM) analog meter.

38 AMMETERS AND VOLTMETERS FIG Digital multimeter (DMM).

39 APPLICATIONS FIG Battery charger: (a) external appearance; (b) internal construction.

40 APPLICATIONS FIG Electrical schematic for the battery charger of Fig

41 APPLICATIONS FIG Answering machine/phone 9 V dc supply.

42 APPLICATIONS FIG Internal construction of the 9 V dc supply in Fig

43 ความต านทาน Resistance

44 INTRODUCTION This opposition to the flow of charge through an electrical circuit, called resistance, has the units of ohms and uses the Greek letter omega (Ω) as its symbol. The graphic symbol for resistance, which resembles the cutting edge of a saw.

45 INTRODUCTION FIG. 3.1 Resistance symbol and notation.

46 INTRODUCTION This opposition, due primarily to collisions and friction between the free electrons and other electrons, ions, and atoms in the path of motion, converts the supplied electrical energy into heat that raises the temperature of the electrical component and surrounding medium. The heat you feel from an electrical heater is simply due to current passing through a high-resistance material.

47 RESISTANCE: CIRCULAR WIRES The resistance of any material is due primarily to four factors: Material Length Cross-sectional area Temperature of the material

48 RESISTANCE: CIRCULAR WIRES The first three elements are related by the following basic equation for resistance:

49 RESISTANCE: CIRCULAR WIRES FIG. 3.2 Factors affecting the resistance of a conductor.

50 RESISTANCE: CIRCULAR WIRES TABLE 3.1 Resistivity (p) of various materials.

51 RESISTANCE: CIRCULAR WIRES FIG. 3.3 Cases in which R2 > R1. For each case, all remaining parameters that control the resistance level are the same.

52 RESISTANCE: CIRCULAR WIRES Circular Mils (CM) In Eq. (3.1), the area is measured in a quantity called circular mils (CM). It is the quantity used in most commercial wire tables, and thus it needs to be carefully defined. The mil is a unit of measurement for length and is related to the inch by

53 WIRE TABLES The wire table was designed primarily to standardize the size of wire produced by manufacturers. As a result, the manufacturer has a larger market, and the consumer knows that standard wire sizes will always be available. The table was designed to assist the user in every way possible; it usually includes data such as the cross-sectional area in circular mils, diameter in mils, ohms per 1000 feet at 20 C, and weight per 1000 feet.

54 WIRE TABLES TABLE 3.2 American Wire Gage (AWG) sizes.

55 WIRE TABLES FIG. 3.8 Popular wire sizes and some of their areas of application.

56 TYPES OF RESISTORS Fixed Resistors Resistors are made in many forms, but all belong in either of two groups: fixed or variable. The most common of the low-wattage, fixedtype resistors is the film resistor.

57 TYPES OF RESISTORS Fixed Resistors FIG Film resistors: (a) construction; (b) types.

58 TYPES OF RESISTORS Fixed Resistors FIG Fixed-composition resistors: (a) construction; (b) appearance.

59 TYPES OF RESISTORS Fixed Resistors FIG Fixed metal-oxide resistors of different wattage ratings.

60 TYPES OF RESISTORS Fixed Resistors FIG Various types of fixed resistors.

61 TYPES OF RESISTORS Variable Resistors Variable resistors, as the name implies, have a terminal resistance that can be varied by turning a dial, knob, screw, or whatever seems appropriate for the application. They can have two or three terminals, but most have three terminals. If the two- or three-terminal device is used as a variable resistor, it is usually referred to as a rheostat.

62 TYPES OF RESISTORS Variable Resistors If the three-terminal device is used for controlling potential levels, it is then commonly called a potentiometer. Even though a three-terminal device can be used as a rheostat or a potentiometer (depending on how it is connected), it is typically called a potentiometer when listed in trade magazines or requested for a particular application.

63 TYPES OF RESISTORS Variable Resistors FIG Potentiometer: (a) symbol; (b) and (c) rheostat connections; (d) rheostat symbol.

64 TYPES OF RESISTORS Variable Resistors FIG Molded composition-type potentiometer. (Courtesy of Allen- Bradley Co.)

65 TYPES OF RESISTORS Variable Resistors FIG Resistance components of a potentiometer: (a) between outside terminals; (b) between wiper arm and each outside terminal.

66 TYPES OF RESISTORS Variable Resistors FIG Variable resistors: (a) 4 mm ( 5/32 in.) trimmer (courtesy of Bourns, Inc.); (b) conductive plastic and cermet elements (courtesy of Honeywell Clarostat); (c) three-point wirewound resistor.

67 COLOR CODING AND STANDARD RESISTOR VALUES A wide variety of resistors, fixed or variable, are large enough to have their resistance in ohms printed on the casing. Some, however, are too small to have numbers printed on them, so a system of color coding is used. For the thin-film resistor, four, five, or six bands may be used. The four-band scheme is described. Later in this section the purpose of the fifth and sixth bands will be described.

68 COLOR CODING AND STANDARD RESISTOR VALUES FIG Color coding for fixed resistors.

69 COLOR CODING AND STANDARD RESISTOR VALUES FIG Color coding.

70 COLOR CODING AND STANDARD RESISTOR VALUES FIG Example FIG Example 3.12.

71 COLOR CODING AND STANDARD RESISTOR VALUES FIG Five-band color coding for fixed resistors.

72 COLOR CODING AND STANDARD RESISTOR VALUES TABLE 3.5 Standard values of commercially available resistors.

73 CONDUCTANCE By finding the reciprocal of the resistance of a material, we have a measure of how well the material conducts electricity. The quantity is called conductance, has the symbol G, and is measured in siemens.

74 OHMMETERS The ohmmeter is an instrument used to perform the following tasks and several other useful functions: Measure the resistance of individual or combined elements. Detect open-circuit (high-resistance) and short-circuit (lowresistance) situations. Check the continuity of network connections and identify wires of a multilead cable. Test some semiconductor (electronic) devices.

75 OHMMETERS FIG Measuring the resistance of a single element. FIG Checking the continuity of a connection.

76 OHMMETERS FIG Identifying the leads of a multilead cable.

77 SUPERCONDUCTORS The field of electricity/electronics is one of the most exciting of our time. New developments appear almost weekly from extensive research and development activities. The research drive to develop a superconductor capable of operating at temperatures closer to room temperature has been receiving increasing attention in recent years due to the need to cut energy losses. What are superconductors? Why is their development so important? In a nutshell, superconductors are conductors of electric charge that, for all practical purposes, have zero resistance.

78 SUPERCONDUCTORS FIG Rising temperatures of superconductors.

79 SUPERCONDUCTORS FIG Defining the critical temperature T c.

80 THERMISTORS The thermistor is a two-terminal semiconductor device whose resistance, as the name suggests, is temperature sensitive. FIG Thermistor: (a) characteristics; (b) symbol.

81 THERMISTORS FIG NTC (negative temperature coefficient) and PTC (positive temperature coefficient) thermistors.

82 THERMISTORS FIG Photoconductive cell: (a) characteristics. (b) symbol.

83 PHOTOCONDUCTIVE CELL The photoconductive cell is a two-terminal semiconductor device whose terminal resistance is determined by the intensity of the incident light on its exposed surface. As the applied illumination increases in intensity, the energy state of the surface electrons and atoms increases, with a resultant increase in the number of free carriers and a corresponding drop in resistance.

84 PHOTOCONDUCTIVE CELL FIG Photoconductive cells.

85 VARISTORS Varistors are voltage-dependent, nonlinear resistors used to suppress high-voltage transients; that is, their characteristics enable them to limit the voltage that can appear across the terminals of a sensitive device or system.

86 VARISTORS FIG Varistors available with maximum dc voltage ratings between 18 V and 615 V.

87 APPLICATIONS The following are examples of how resistance can be used to perform a variety of tasks, from heating to measuring the stress or strain on a supporting member of a structure. In general, resistance is a component of every electrical or electronic application.

88 APPLICATIONS Strain Gauges Any change in the shape of a structure can be detected using strain gauges whose resistance changes with applied stress or flex. FIG Resistive strain gauge.

89 OHM S LAW

90 OHM S LAW FIG. 4.2 Basic circuit.

91 OHM S LAW FIG. 4.3 Defining polarities.

92 OHM S LAW FIG. 4.4 Example 4.3. FIG. 4.5 Example 4.4.

93 PLOTTING OHM S LAW Graphs, characteristics, plots, and the like play an important role in every technical field as modes through which the broad picture of the behavior or response of a system can be conveniently displayed. It is therefore critical to develop the skills necessary both to read data and to plot them in such a manner that they can be interpreted easily.

94 PLOTTING OHM S LAW FIG. 4.6 Plotting Ohm s law.

95 PLOTTING OHM S LAW FIG. 4.7 Demonstrating on an I-V plot that the lower the resistance, the steeper is the slope.

96 PLOTTING OHM S LAW FIG. 4.8 Applying Eq. (4.7).

97 PLOTTING OHM S LAW FIG. 4.9 Example 4.5.

98 POWER In general, the term power is applied to provide an indication of how much work (energy conversion) can be accomplished in a specified amount of time; that is, power is a rate of doing work.

99 ENERGY

100 ENERGY Note that the energy in kilowatthours is simply the energy in watthours divided by To develop some sense for the kilowatthour energy level, consider that 1 kwh is the energy dissipated by a 100 W bulb in 10 h. The kilowatthour meter is an instrument for measuring the energy supplied to the residential or commercial user of electricity.

101 ENERGY FIG Kilowatthour meters: (a) analog; (b) digital. (Courtesy of ABB Electric Metering Systems.)

102 ENERGY FIG Cost per kwh and average kwh per customer versus time. (Based on data from Edison Electric Institute.)

103 ENERGY TABLE 4.1 Typical wattage ratings of some common household items.

104

Chapter 3. Resistance. Copyright 2011 by Pearson Education, Inc. publishing as Pearson [imprint] Introductory Circuit Analysis, 12/e Boylestad

Chapter 3. Resistance. Copyright 2011 by Pearson Education, Inc. publishing as Pearson [imprint] Introductory Circuit Analysis, 12/e Boylestad Chapter 3 Resistance OBJECTIVES Become familiar with the parameters that determine the resistance of an element and be able to calculate the resistance from the given dimensions and material characteristics.

More information

ET 162 Circuit Analysis. Current and Voltage. Electrical and Telecommunication Engineering Technology. Professor Jang

ET 162 Circuit Analysis. Current and Voltage. Electrical and Telecommunication Engineering Technology. Professor Jang ET 162 Circuit Analysis Current and Voltage Electrical and Telecommunication Engineering Technology Professor Jang Acknowledgement I want to express my gratitude to Prentice Hall giving me the permission

More information

ELEC 103. Objectives

ELEC 103. Objectives ELEC 103 Voltage, Current, and Resistance Objectives Define voltage and discuss its characteristics Define current and discuss its characteristics Define resistance and discuss its characteristics Identify

More information

SYSTEMS OF UNITS. 1 st Class Basic of Electrical Engineering. Current and Voltage

SYSTEMS OF UNITS. 1 st Class Basic of Electrical Engineering. Current and Voltage SYSTEMS OF UNITS In the past, the systems of units most commonly used were the English and metric, as outlined in Table below. Note that while the English system is based on a single standard, the metric

More information

Chapter 03. Resistance. Resistance of Conductors. Type of Material resistivity (Ω m) Type of Material. Length / Area. Resistance Formula

Chapter 03. Resistance. Resistance of Conductors. Type of Material resistivity (Ω m) Type of Material. Length / Area. Resistance Formula Chapter 03 Resistance Resistance of Conductors Resistance of material depends on several factors: Type of Material, Conductor length, or l Cross-sectional area, A Temperature, T C-C Source: Tsai Circuit

More information

Chapter 2. Chapter 2

Chapter 2. Chapter 2 Chapter 2 The Bohr atom The Bohr atom is useful for visualizing atomic structure. The nucleus is positively charged and has the protons and neutrons. Electrons are negatively charged and in discrete shells.

More information

Basic Electricity. Chapter 2. Al Penney VO1NO

Basic Electricity. Chapter 2. Al Penney VO1NO Basic Electricity Chapter 2 The Structure of Matter All matter is composed of Atoms. Atoms consist of: Neutrons; Protons; and Electrons Over 100 different atoms. These are called Elements. Atoms Electrostatic

More information

Unit 2. ET Unit 2. Voltage, Current, and Resistance. Electronics Fundamentals Circuits, Devices and Applications - Floyd. Copyright 2009 Pearson

Unit 2. ET Unit 2. Voltage, Current, and Resistance. Electronics Fundamentals Circuits, Devices and Applications - Floyd. Copyright 2009 Pearson ET 115 - Unit 2 Voltage, Current, and Resistance The Bohr atom The Bohr atom is useful for visualizing atomic structure. The nucleus is positively charged and has the protons and neutrons. Electrons are

More information

EE301 RESISTANCE AND OHM S LAW

EE301 RESISTANCE AND OHM S LAW Learning Objectives a. Describe the concept of resistance b. Use Ohm s law to calculate current, voltage, and resistance values in a circuit c. Discuss the difference between an open circuit and a short

More information

CHAPTER 1 ELECTRICITY

CHAPTER 1 ELECTRICITY CHAPTER 1 ELECTRICITY Electric Current: The amount of charge flowing through a particular area in unit time. In other words, it is the rate of flow of electric charges. Electric Circuit: Electric circuit

More information

Resistance : R = ρ( ) units are Ohms ( 14 ) Resistor 100 ohms

Resistance : R = ρ( ) units are Ohms ( 14 ) Resistor 100 ohms Resistance : If we look a little more closely into how charge flows in a conductor, we see that the electron is essentially free to move about the metal conductor material. The electron roams about the

More information

CLASS X- ELECTRICITY

CLASS X- ELECTRICITY Conductor- Insulator: Materia Materials through which electric current cannot pass are called insulators. Electric Circuit: A continuous a CLASS X- ELECTRICITY als through which electric current can pass

More information

STATEWIDE CAREER/TECHNICAL EDUCATION COURSE ARTICULATION REVIEW MINUTES

STATEWIDE CAREER/TECHNICAL EDUCATION COURSE ARTICULATION REVIEW MINUTES STATEWIDE CAREER/TECHNICAL EDUCATION COURSE ARTICULATION REVIEW MINUTES Articulation Agreement Identifier: _ELT 107/ELT 108 (2011-1) Plan-of-Instruction version number (e.g.; INT 100 (2007-1)). Identifier

More information

Electricity. dronstudy.com

Electricity. dronstudy.com Electricity Electricity is a basic part of our nature and it is one of our most widely used forms of energy. We use electricity virtually every minute of every day for example in lighting, heating, refrigeration,

More information

Electricity. Prepared by Juan Blázquez, Alissa Gildemann. Electric charge is a property of all objects. It is responsible for electrical phenomena.

Electricity. Prepared by Juan Blázquez, Alissa Gildemann. Electric charge is a property of all objects. It is responsible for electrical phenomena. Unit 11 Electricity 1. Electric charge Electric charge is a property of all objects. It is responsible for electrical phenomena. Electrical phenomena are caused by the forces of attraction and repulsion.

More information

INTRODUCTION TO ELECTRONICS

INTRODUCTION TO ELECTRONICS INTRODUCTION TO ELECTRONICS Basic Quantities Voltage (symbol V) is the measure of electrical potential difference. It is measured in units of Volts, abbreviated V. The example below shows several ways

More information

Direct Currents. We will now start to consider charges that are moving through a circuit, currents. Sunday, February 16, 2014

Direct Currents. We will now start to consider charges that are moving through a circuit, currents. Sunday, February 16, 2014 Direct Currents We will now start to consider charges that are moving through a circuit, currents. 1 Direct Current Current usually consists of mobile electrons traveling in conducting materials Direct

More information

Chapter 02. Voltage and Current. Atomic Theory Review. Atomic Theory Review. Atomic Theory Review. Electrical Charge.

Chapter 02. Voltage and Current. Atomic Theory Review. Atomic Theory Review. Atomic Theory Review. Electrical Charge. Chapter 02 Voltage and Current Atom Atomic Theory Review Contains a nucleus of protons and neutrons Nucleus is surrounded by a group of orbiting electrons Electrons are negative, protons are positive Electrically

More information

Physics 1214 Chapter 19: Current, Resistance, and Direct-Current Circuits

Physics 1214 Chapter 19: Current, Resistance, and Direct-Current Circuits Physics 1214 Chapter 19: Current, Resistance, and Direct-Current Circuits 1 Current current: (also called electric current) is an motion of charge from one region of a conductor to another. Current When

More information

ELECTRICITY. Prepared by: M. S. KumarSwamy, TGT(Maths) Page

ELECTRICITY. Prepared by: M. S. KumarSwamy, TGT(Maths) Page ELECTRICITY 1. Name a device that helps to maintain a potential difference across a conductor. Cell or battery 2. Define 1 volt. Express it in terms of SI unit of work and charge calculate the amount of

More information

Closed loop of moving charges (electrons move - flow of negative charges; positive ions move - flow of positive charges. Nucleus not moving)

Closed loop of moving charges (electrons move - flow of negative charges; positive ions move - flow of positive charges. Nucleus not moving) Unit 2: Electricity and Magnetism Lesson 3: Simple Circuits Electric circuits transfer energy. Electrical energy is converted into light, heat, sound, mechanical work, etc. The byproduct of any circuit

More information

2. A body that is positively charged is one that has an excess number of electrons.

2. A body that is positively charged is one that has an excess number of electrons. TRUE/FALSE 1. An atom that has lost an electron is called a positive ion. Page: 1 2. A body that is positively charged is one that has an excess number of electrons. 3. An ampere is defined as the amount

More information

1 Written and composed by: Prof. Muhammad Ali Malik (M. Phil. Physics), Govt. Degree College, Naushera

1 Written and composed by: Prof. Muhammad Ali Malik (M. Phil. Physics), Govt. Degree College, Naushera CURRENT ELECTRICITY Q # 1. What do you know about electric current? Ans. Electric Current The amount of electric charge that flows through a cross section of a conductor per unit time is known as electric

More information

Objective of Lecture Discuss resistivity and the three categories of materials Chapter 2.1 Show the mathematical relationships between charge,

Objective of Lecture Discuss resistivity and the three categories of materials Chapter 2.1 Show the mathematical relationships between charge, Objective of Lecture Discuss resistivity and the three categories of materials Chapter 2.1 Show the mathematical relationships between charge, current, voltage, and energy. Chapter 2.2-2.4 Define resistance

More information

AP Physics C - E & M

AP Physics C - E & M Slide 1 / 27 Slide 2 / 27 AP Physics C - E & M Current, Resistance & Electromotive Force 2015-12-05 www.njctl.org Slide 3 / 27 Electric Current Electric Current is defined as the movement of charge from

More information

Electron Theory. Elements of an Atom

Electron Theory. Elements of an Atom Electron Theory Elements of an Atom All matter is composed of molecules which are made up of a combination of atoms. Atoms have a nucleus with electrons orbiting around it. The nucleus is composed of protons

More information

Unit 6 Current Electricity and Circuits

Unit 6 Current Electricity and Circuits Unit 6 Current Electricity and Circuits 2 Types of Electricity Electricity that in motion. Electricity that in motion. Occurs whenever an moves through a. 2 Types of Current Electricity Electricity that

More information

Look over Chapter 26 sections 1-7 Examples 3, 7. Look over Chapter 18 sections 1-5, 8 over examples 1, 2, 5, 8, 9,

Look over Chapter 26 sections 1-7 Examples 3, 7. Look over Chapter 18 sections 1-5, 8 over examples 1, 2, 5, 8, 9, Look over Chapter 26 sections 1-7 Examples 3, 7 Look over Chapter 18 sections 1-5, 8 over examples 1, 2, 5, 8, 9, 1)How to find a current in a wire. 2)What the Current Density and Draft Speed are. 3)What

More information

ELECTRICITY UNIT REVIEW

ELECTRICITY UNIT REVIEW ELECTRICITY UNIT REVIEW S1-3-04: How does the Atomic Model help to explain static electricity? 1. Which best describes static electricity? a) charges that can be collected and held in one place b) charges

More information

Electric Current. Chapter 17. Electric Current, cont QUICK QUIZ Current and Resistance. Sections: 1, 3, 4, 6, 7, 9

Electric Current. Chapter 17. Electric Current, cont QUICK QUIZ Current and Resistance. Sections: 1, 3, 4, 6, 7, 9 Electric Current Chapter 17 Current and Resistance Sections: 1, 3, 4, 6, 7, 9 Whenever electric charges of like signs move, an electric current is said to exist The current is the rate at which the charge

More information

Chapter 3. Chapter 3

Chapter 3. Chapter 3 Chapter 3 Review of V, I, and R Voltage is the amount of energy per charge available to move electrons from one point to another in a circuit and is measured in volts. Current is the rate of charge flow

More information

Section 1 Electric Charge and Force

Section 1 Electric Charge and Force CHAPTER OUTLINE Section 1 Electric Charge and Force Key Idea questions > What are the different kinds of electric charge? > How do materials become charged when rubbed together? > What force is responsible

More information

PhysicsAndMathsTutor.com

PhysicsAndMathsTutor.com Electricity May 02 1. The graphs show the variation with potential difference V of the current I for three circuit elements. PhysicsAndMathsTutor.com When the four lamps are connected as shown in diagram

More information

SECTION 3 BASIC AUTOMATIC CONTROLS UNIT 12 BASIC ELECTRICITY AND MAGNETISM

SECTION 3 BASIC AUTOMATIC CONTROLS UNIT 12 BASIC ELECTRICITY AND MAGNETISM SECTION 3 BASIC AUTOMATIC CONTROLS UNIT 12 BASIC ELECTRICITY AND MAGNETISM Unit Objectives Describe the structure of an atom. Identify atoms with a positive charge and atoms with a negative charge. Explain

More information

UNIT 3: Electric charge.

UNIT 3: Electric charge. UNIT 3: Electric charge Recommended Prior Knowledge Students should be aware of the two types of charge, charging by friction and by induction. They should be able to distinguish between conductors and

More information

Electron Theory of Charge. Electricity. 1. Matter is made of atoms. Refers to the generation of or the possession of electric charge.

Electron Theory of Charge. Electricity. 1. Matter is made of atoms. Refers to the generation of or the possession of electric charge. Electricity Refers to the generation of or the possession of electric charge. There are two kinds of electricity: 1. Static Electricity the electric charges are "still" or static 2. Current Electricity

More information

EXPERIMENT 12 OHM S LAW

EXPERIMENT 12 OHM S LAW EXPERIMENT 12 OHM S LAW INTRODUCTION: We will study electricity as a flow of electric charge, sometimes making analogies to the flow of water through a pipe. In order for electric charge to flow a complete

More information

Test Review Electricity

Test Review Electricity Name: Date: 1. An operating television set draws 0.71 ampere of current when connected to a 120-volt outlet. Calculate the time it takes the television to consume 3.0 10 5 joules of electric energy. [Show

More information

Electric Charges & Current. Chapter 12. Types of electric charge

Electric Charges & Current. Chapter 12. Types of electric charge Electric Charges & Current Chapter 12 Types of electric charge Protons w/ + charge stuck in the nucleus Electrons w/ - charge freely moving around the nucleus in orbits 1 Conductors Allow the easy flow

More information

Electric charge is conserved the arithmetic sum of the total charge cannot change in any interaction.

Electric charge is conserved the arithmetic sum of the total charge cannot change in any interaction. Electrostatics Electric charge is conserved the arithmetic sum of the total charge cannot change in any interaction. Electric Charge in the Atom Atom: Nucleus (small, massive, positive charge) Electron

More information

Insulators Non-metals are very good insulators; their electrons are very tightly bonded and cannot move.

Insulators Non-metals are very good insulators; their electrons are very tightly bonded and cannot move. SESSION 11: ELECTRIC CIRCUITS Key Concepts Resistance and Ohm s laws Ohmic and non-ohmic conductors Series and parallel connection Energy in an electric circuit X-planation 1. CONDUCTORS AND INSULATORS

More information

SIMPLE D.C. CIRCUITS AND MEASUREMENTS Background

SIMPLE D.C. CIRCUITS AND MEASUREMENTS Background SIMPLE D.C. CICUITS AND MEASUEMENTSBackground This unit will discuss simple D.C. (direct current current in only one direction) circuits: The elements in them, the simple arrangements of these elements,

More information

Electricity Review completed.notebook. June 13, 2013

Electricity Review completed.notebook. June 13, 2013 Which particle in an atom has no electric charge associated with it? a. proton c. neutron b. electron d. nucleus Jun 12 9:28 PM The electrons in a metal sphere can be made to move by touching it with a

More information

Chapter 17. Current and Resistance. Sections: 1, 3, 4, 6, 7, 9

Chapter 17. Current and Resistance. Sections: 1, 3, 4, 6, 7, 9 Chapter 17 Current and Resistance Sections: 1, 3, 4, 6, 7, 9 Equations: 2 2 1 e r q q F = k 2 e o r Q k q F E = = I R V = A L R ρ = )] ( 1 [ o o T T + = α ρ ρ V I V t Q P = = R V R I P 2 2 ) ( = = C Q

More information

Basic Electricity Video Exam

Basic Electricity Video Exam Name: Class: Date: Basic Electricity Video Exam Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Matter is made of. a. plasma, gas, and solid b. solid,

More information

ENGI 1040: ELECTRIC CIRCUITS Winter Part I Basic Circuits

ENGI 1040: ELECTRIC CIRCUITS Winter Part I Basic Circuits 1. Electric Charge ENGI 1040: ELECTRIC CIRCUITS Winter 2018 Part I Basic Circuits atom elementary unit of a material which contains the properties of that material can be modeled as negatively charged

More information

Name: Class: Date: 1. Friction can result in the transfer of protons from one object to another as the objects rub against each other.

Name: Class: Date: 1. Friction can result in the transfer of protons from one object to another as the objects rub against each other. Class: Date: Physics Test Review Modified True/False Indicate whether the statement is true or false. If false, change the identified word or phrase to make the statement true. 1. Friction can result in

More information

Resistivity and Temperature Coefficients (at 20 C)

Resistivity and Temperature Coefficients (at 20 C) Homework # 4 Resistivity and Temperature Coefficients (at 0 C) Substance Resistivity, Temperature ( m) Coefficient, (C ) - Conductors Silver.59 x 0-0.006 Copper.6 x 0-0.006 Aluminum.65 x 0-0.0049 Tungsten

More information

What are the two types of current? The two types of current are direct current and alternating current.

What are the two types of current? The two types of current are direct current and alternating current. Electric Current What are the two types of current? The two types of current are direct current and alternating current. Electric Current The continuous flow of electric charge is an electric current.

More information

Read Chapter 7; pages:

Read Chapter 7; pages: Forces Read Chapter 7; pages: 191-221 Objectives: - Describe how electrical charges exert forces on each other; Compare the strengths of electric and gravitational forces; Distinguish between conductors

More information

LESSON 5: ELECTRICITY II

LESSON 5: ELECTRICITY II LESSON 5: ELECTRICITY II The first two points are a review of the previous lesson 1.1.ELECTRIC CHARGE - Electric charge is a property of all objects and is responsible for electrical phenomena. -All matter

More information

ELECTRICITY. Electric Circuit. What do you already know about it? Do Smarty Demo 5/30/2010. Electric Current. Voltage? Resistance? Current?

ELECTRICITY. Electric Circuit. What do you already know about it? Do Smarty Demo 5/30/2010. Electric Current. Voltage? Resistance? Current? ELECTRICITY What do you already know about it? Voltage? Resistance? Current? Do Smarty Demo 1 Electric Circuit A path over which electrons travel, out through the negative terminal, through the conductor,

More information

Curriculum Interpretation Electricity and Magnetism. Lee Wai Kit

Curriculum Interpretation Electricity and Magnetism. Lee Wai Kit Curriculum Interpretation Electricity and Magnetism Lee Wai Kit Electricity and Magnetism 4.1 Electrostatics 4.2 Circuits and domestic electricity 4.3 Electromagnetism 4.1 Electrostatics electric charges

More information

CHARGE AND ELECTRIC CURRENT:

CHARGE AND ELECTRIC CURRENT: ELECTRICITY: CHARGE AND ELECTRIC CURRENT ELECTRIC CHARGE ELECTRIC CURRENT ELECTRIC CIRCUIT DEFINITION AND COMPONENTS EFFECTS OF ELECTRIC CURRENT TYPES OF CIRCUITS ELECTRIC QUANTITIES VOLTAGE CURRENT RESISTANCE

More information

Unit-1:ECE131: Basic Electrical & Electronics Engg

Unit-1:ECE131: Basic Electrical & Electronics Engg Unit-1:ECE131: Basic Electrical & Electronics Engg By Prof. Bhupinder Verma, DoD ECE LPU bhupinder.verma@lpu.co.in 33-206, Meeting time Mon/Thu: 4-6pm Mr. Suryender Kumar, AP ECE suryender.16890@lpu.co.in

More information

Electroscope Used to are transferred to the and Foil becomes and

Electroscope Used to are transferred to the and Foil becomes and Electricity Notes Chapter 17 Section 1: Electric Charge and Forces Electric charge is a variety of independent all with one single name. Electricity is related to, and both (-) and (+) carry a charge.

More information

RADIO AMATEUR EXAM GENERAL CLASS

RADIO AMATEUR EXAM GENERAL CLASS RAE-Lessons by 4S7VJ 1 RADIO AMATEUR EXAM GENERAL CLASS CHAPTER- 1 BASIC ELECTRICITY By 4S7VJ 1.1 ELECTRIC CHARGE Everything physical is built up of atoms, or particles. They are so small that they cannot

More information

UNIT II CURRENT ELECTRICITY

UNIT II CURRENT ELECTRICITY UNIT II CUENT ELECTICITY Weightage : 07 Marks Electric current; flow of electric charges in a metllic conductor, drift velocity, mobility and their relation with electric current. Ohm s law electrical

More information

Trade of Electrician. Power and Energy

Trade of Electrician. Power and Energy Trade of Electrician Standards Based Apprenticeship Power and Energy Phase 2 Module No. 2.1 Unit No. 2.1.6 COURSE NOTES SOLAS Electrical Course Notes - Unit 2.1.6 Created by Gerry Ryan - Galway TC Revision

More information

Notes on Electricity (Circuits)

Notes on Electricity (Circuits) A circuit is defined to be a collection of energy-givers (batteries) and energy-takers (resistors, light bulbs, radios, etc.) that form a closed path (or complete path) through which electrical current

More information

Introduction. Upon completion of Basics of Electricity you will be able to: Explain the difference between conductors and insulators

Introduction. Upon completion of Basics of Electricity you will be able to: Explain the difference between conductors and insulators Table of Contents Introduction...2 Electron Theory...4 Conductors, Insulators and Semiconductors...5 Electric Charges...7 Current...9 Voltage...11 Resistance...13 Simple Electric Circuit...15 Ohm s Law...16

More information

Section 1: Electric Charge and Force

Section 1: Electric Charge and Force Electricity Section 1 Section 1: Electric Charge and Force Preview Key Ideas Bellringer Electric Charge Transfer of Electric Charge Induced Charges Charging by Contact Electric Force Electric Field Lines

More information

52 VOLTAGE, CURRENT, RESISTANCE, AND POWER

52 VOLTAGE, CURRENT, RESISTANCE, AND POWER 52 VOLTAGE, CURRENT, RESISTANCE, AND POWER 1. What is voltage, and what are its units? 2. What are some other possible terms for voltage? 3. Batteries create a potential difference. The potential/voltage

More information

Electricity is the movement of electrical charge through a circuit (usually, flowing electrons.) The Greek word for amber is electron

Electricity is the movement of electrical charge through a circuit (usually, flowing electrons.) The Greek word for amber is electron Electricity is the movement of electrical charge through a circuit (usually, flowing electrons.) The Greek word for amber is electron Women in ancient Greece noticed that rubbing their amber jewelry against

More information

REVISED HIGHER PHYSICS REVISION BOOKLET ELECTRONS AND ENERGY

REVISED HIGHER PHYSICS REVISION BOOKLET ELECTRONS AND ENERGY REVSED HGHER PHYSCS REVSON BOOKLET ELECTRONS AND ENERGY Kinross High School Monitoring and measuring a.c. Alternating current: Mains supply a.c.; batteries/cells supply d.c. Electrons moving back and forth,

More information

Resistance Learning Outcomes

Resistance Learning Outcomes Resistance Learning Outcomes Define resistance and give its unit. Solve problems about resistance. State Ohm s Law. HL: Derive the formulas for resistors in series and parallel. Solve problems about resistors

More information

2007 The McGraw-Hill Companies, Inc. All rights reserved.

2007 The McGraw-Hill Companies, Inc. All rights reserved. Chapter 3 Ohm s Law Topics Covered in Chapter 3 3-1: The Current I = V/R 3-2: The Voltage V = IR 3-3: The Resistance R = V/I 3-4: Practical Units 3-5: Multiple and Submultiple Units 2007 The McGraw-Hill

More information

Exercise 2: The DC Ohmmeter

Exercise 2: The DC Ohmmeter Exercise 2: The DC Ohmmeter EXERCISE OBJECTIVE When you have completed this exercise, you will be able to measure resistance by using a basic meter movement. You will verify ohmmeter operation by measuring

More information

PHYSICS FORM 5 ELECTRICAL QUANTITES

PHYSICS FORM 5 ELECTRICAL QUANTITES QUANTITY SYMBOL UNIT SYMBOL Current I Amperes A Voltage (P.D.) V Volts V Resistance R Ohm Ω Charge (electric) Q Coulomb C Power P Watt W Energy E Joule J Time T seconds s Quantity of a Charge, Q Q = It

More information

Renewable Energy Systems

Renewable Energy Systems Renewable Energy Systems 2 Buchla, Kissell, Floyd Chapter Outline Electrical Fundamentals 2 Buchla, Kissell, Floyd 2-1 ENERGY, CHARGE, AND VOLTAGE 2-2 ELECTRICAL CURRENT 2-3 RESISTANCE AND OHM'S LAW 2-4

More information

Resistance Learning Outcomes. Resistance Learning Outcomes. Resistance

Resistance Learning Outcomes. Resistance Learning Outcomes. Resistance Resistance Learning Outcomes Define resistance and give its unit. Solve problems about resistance. State Ohm s Law. HL: Derive the formulas for resistors in series and parallel. Solve problems about resistors

More information

8. Electric circuit: The closed path along which electric current flows is called an electric circuit.

8. Electric circuit: The closed path along which electric current flows is called an electric circuit. GIST OF THE LESSON 1. Positive and negative charges: The charge acquired by a glass rod when rubbed with silk is called positive charge and the charge acquired by an ebonite rod when rubbed with wool is

More information

Direct Current (DC) Circuits

Direct Current (DC) Circuits Direct Current (DC) Circuits NOTE: There are short answer analysis questions in the Participation section the informal lab report. emember to include these answers in your lab notebook as they will be

More information

From this analogy you can deduce some rules that you should keep in mind during all your electronics work:

From this analogy you can deduce some rules that you should keep in mind during all your electronics work: Resistors, Volt and Current Posted on April 4, 2008, by Ibrahim KAMAL, in General electronics, tagged In this article we will study the most basic component in electronics, the resistor and its interaction

More information

Some Important Electrical Units

Some Important Electrical Units Some Important Electrical Units Quantity Unit Symbol Current Charge Voltage Resistance Power Ampere Coulomb Volt Ohm Watt A C V W W These derived units are based on fundamental units from the meterkilogram-second

More information

Conceptual Physical Science 6 th Edition

Conceptual Physical Science 6 th Edition Conceptual Physical Science 6 th Edition Chapter 8: STATIC AND CURRENT ELECTRICITY 1 Chapter 8: STATIC AND CURRENT ELECTRICITY Chapter 8: Read: All Homework: Four problems from the following set: 4, 6,

More information

Electric current is a flow of electrons in a conductor. The SI unit of electric current is ampere.

Electric current is a flow of electrons in a conductor. The SI unit of electric current is ampere. C h a p t e r at G l a n c e 4. Electric Current : Electric current is a flow of electrons in a conductor. The SI unit of electric current is ampere. Current = Charge time i.e, I = Q t The SI unit of charge

More information

Chapter 16. Current and Drift Speed. Electric Current, cont. Current and Drift Speed, cont. Current and Drift Speed, final

Chapter 16. Current and Drift Speed. Electric Current, cont. Current and Drift Speed, cont. Current and Drift Speed, final Chapter 6 Current, esistance, and Direct Current Circuits Electric Current Whenever electric charges of like signs move, an electric current is said to exist The current is the rate at which the charge

More information

Chapter 17 Electric Current and Resistance Pearson Education, Inc.c

Chapter 17 Electric Current and Resistance Pearson Education, Inc.c Chapter 17 Electric Current and Resistance 2010 Pearson Education, Inc.c 1 Units of Chapter 17 Batteries and Direct Current Current and Drift Velocity Resistance and Ohm s Law Electric Power 2010 Pearson

More information

Downloaded from

Downloaded from CHAPTER 12 ELECTRICITY Electricity is a general term that encompasses a variety of phenomena resulting from the presence and flow of electric charge. These include many easily recognizable phenomena such

More information

Physics Module Form 5 Chapter 2- Electricity GCKL 2011 CHARGE AND ELECTRIC CURRENT

Physics Module Form 5 Chapter 2- Electricity GCKL 2011 CHARGE AND ELECTRIC CURRENT 2.1 CHARGE AND ELECTRIC CURRENT Van de Graaf 1. What is a Van de Graaff generator? Fill in each of the boxes the name of the part shown. A device that... and... at high voltage on its dome. dome 2. You

More information

Learning Module 2: Fundamentals of Electricity. 101 Basic Series

Learning Module 2: Fundamentals of Electricity. 101 Basic Series Learning Module 2: Fundamentals of Electricity 101 Basic Series What You Will Learn We will start with an overview to introduce you to the main points about electricity, then we will step through each

More information

Physics Module Form 5 Chapter 2- Electricity GCKL 2011 CHARGE AND ELECTRIC CURRENT

Physics Module Form 5 Chapter 2- Electricity GCKL 2011 CHARGE AND ELECTRIC CURRENT 2.1 CHARGE AND ELECTRIC CURRENT Van de Graaf 1. What is a Van de Graaff generator? Fill in each of the boxes the name of the part shown. A device that produces and store electric charges at high voltage

More information

Dynamic Electricity. All you need to be an inventor is a good imagination and a pile of junk. -Thomas Edison

Dynamic Electricity. All you need to be an inventor is a good imagination and a pile of junk. -Thomas Edison Dynamic Electricity All you need to be an inventor is a good imagination and a pile of junk. -Thomas Edison Review Everything is made of atoms which contain POSITIVE particles called PROTONS and NEGATIVE

More information

The Digital Multimeter (DMM)

The Digital Multimeter (DMM) The Digital Multimeter (DMM) Since Physics 152 covers electricity and magnetism, the analysis of both DC and AC circuits is required. In the lab, you will need to measure resistance, potential (voltage),

More information

Chapter 21 Electric Current and Direct- Current Circuits

Chapter 21 Electric Current and Direct- Current Circuits Chapter 21 Electric Current and Direct- Current Circuits Units of Chapter 21 Electric Current Resistance and Ohm s Law Energy and Power in Electric Circuits Resistors in Series and Parallel Kirchhoff s

More information

Lecture PowerPoints. Chapter 18 Physics: Principles with Applications, 6 th edition Giancoli

Lecture PowerPoints. Chapter 18 Physics: Principles with Applications, 6 th edition Giancoli Lecture PowerPoints Chapter 18 Physics: Principles with Applications, 6 th edition Giancoli 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for

More information

Introduction to Electric Circuit Analysis

Introduction to Electric Circuit Analysis EE110300 Practice of Electrical and Computer Engineering Lecture 2 and Lecture 4.1 Introduction to Electric Circuit Analysis Prof. Klaus Yung-Jane Hsu 2003/2/20 What Is An Electric Circuit? Electrical

More information

Chapter 25 Electric Currents and Resistance. Copyright 2009 Pearson Education, Inc.

Chapter 25 Electric Currents and Resistance. Copyright 2009 Pearson Education, Inc. Chapter 25 Electric Currents and Resistance Units of Chapter 25 The Electric Battery Electric Current Ohm s Law: Resistance and Resistors Resistivity Electric Power Units of Chapter 25 Power in Household

More information

Current and Resistance

Current and Resistance Chapter 26 Current and Resistance Copyright 26-1 Electric Current As Fig. (a) reminds us, any isolated conducting loop regardless of whether it has an excess charge is all at the same potential. No electric

More information

Q-2 How many coulombs of charge leave the power supply during each second?

Q-2 How many coulombs of charge leave the power supply during each second? Part I - Circuit Elements in Series In Figure 1 at the right circuit elements #1, #2, #3 (in this case light bulbs) are said to be connected "IN SERIES". That is, they are connected in a series one right

More information

Module 1 Units 3,4,5

Module 1 Units 3,4,5 Module 1 Units 3,4,5 1. What is matter? Anything that occupies space or has mass 2. What are the two general categories of substances? Elements and compounds 3. How many naturally occurring elements are

More information

Theme 5: Electricity in the Home

Theme 5: Electricity in the Home Theme 5: Electricity in the Home Static Electricity WHAT IS STATIC ELECTRICITY? Everything we see is made up of tiny little parts called atoms. So what are atoms made of? In the middle of each atom is

More information

Resistance. FIG. 3.1 Resistance symbol and notation.

Resistance. FIG. 3.1 Resistance symbol and notation. esistance 3 Objectives Become familiar with the parameters that determine the resistance of an element and be able to calculate the resistance from the given dimensions and material characteristics. Understand

More information

Electromagnetism Checklist

Electromagnetism Checklist Electromagnetism Checklist Elementary Charge and Conservation of Charge 4.1.1A Convert from elementary charge to charge in coulombs What is the charge in coulombs on an object with an elementary charge

More information

Tactics Box 23.1 Using Kirchhoff's Loop Law

Tactics Box 23.1 Using Kirchhoff's Loop Law PH203 Chapter 23 solutions Tactics Box 231 Using Kirchhoff's Loop Law Description: Knight/Jones/Field Tactics Box 231 Using Kirchhoff s loop law is illustrated Learning Goal: To practice Tactics Box 231

More information

V R I = UNIT V: Electricity and Magnetism Chapters Chapter 34: Electric Current. volt ohm. voltage. current = I. The Flow of Charge (34.

V R I = UNIT V: Electricity and Magnetism Chapters Chapter 34: Electric Current. volt ohm. voltage. current = I. The Flow of Charge (34. IMPORTANT TERMS: Alternating current (AC) Ampere Diode Direct current (DC) Electric current Electric power Electric resistance Ohm Ohm s Law Potential difference Voltage source EQUATIONS: UNIT V: Electricity

More information

Electricity Courseware Instructions

Electricity Courseware Instructions Physics Electricity Courseware Instructions This courseware acts as a supplement to the classroom instruction. The five sections on the following slide link to the topic areas. Following the topic area

More information

Revision checklist SP10. SP10 Electricity and Circuits. SP10a Electric circuits. SP10b Current and potential difference

Revision checklist SP10. SP10 Electricity and Circuits. SP10a Electric circuits. SP10b Current and potential difference Electricity and Circuits a Electric circuits Describe the basic structure of an atom (positions, relative masses and relative charges of protons, neutrons and electrons). Recognise the circuit symbols

More information

Experiment Aim: Students will describe the magnitude of resistance and define the EMF (electromotive force) of a cell.

Experiment Aim: Students will describe the magnitude of resistance and define the EMF (electromotive force) of a cell. Experiment I: Electromotive force and internal resistance Experiment Aim: Students will describe the magnitude of resistance and define the EMF (electromotive force) of a cell. Experimental tools and materials:

More information